Ghi nhớ bài học |

Tích phân

Với các bài toán về tích phân ta lưu ý:

Hàm số f(x) liên tục trên đoạn [a ; b] và F(x) là một nguyên hàm của f(x) trên đoạn [a ; b] thì F(b) - F(a)

được gọi là tích phân từ a đến b của f(x) hay còn gọi là tích phân xác định của f(x) trên đoạn [a ; b], 

Kí hiệu : f(x)dx. 

Do đó : f(x)dx = F(x) = F(b) - F(a).
Nếu F(x) là tổng của nhiều số hạng, ta có thể dùng kí hiệu [F(x)]ba thay cho F(x).

Ghi chú:
1. Quy ước : f(x)dx = 0, f(x)dx = - f(x)dx.

2. f(x)dx = f(t)dt = f(u)du.
3. Nếu f(x) liên tục và không âm trên đoạn [a ; b] thì f(x)dx chính là diện tích S của hình phẳng giới hạn

bởi đồ thị (C ): y = f(x), trục Ox và hai đường thẳng có phương trình x = a, x = b.

* Tính chất : Cho f(x), g(x) liên tục trên đoạn [a ; b]. Khi đó:

                    [f(x) ± g(x)]dx = f(x)dx ± g(x)dx 

                     kf(x) = kf(x)dx
                      f(x)dx+ f(x)dx=  f(x)dx.

* Phương pháp tính tích phân
- Để tính f(x)dx , theo định nghĩa ta chỉ cần tìm một nguyên hàm F(x) của f(x) theo các phương pháp đã nêu và áp dụng :

                 f(x)dx = F(b) - F(a).

Ngoài ra có thể thực hiện bằng phương pháp đổi biến số và tính tích phân từng phần như sau:

1. Phương pháp đổi biến số: Có hai cách đổi biến số:

a) Hàm số f(x) liên tục trên đoạn [a ; b]. Giả sử hằm số x = φ(t) có đạo hàm liên tục trên đoạn [α; β] sao

cho φ(α) = a, φ(β) = b và a ≤ φ(t) ≤ b, ∀t ∈ [α ; β]. Khi đó:
f(x)dx = f[φ(t)]φ’(t)dt là dạng mà tính được trực tiếp.

b) Nếu ta biến đổi được f(x) thành dạng f(x) = g[u(x)].u’(x) với mọi x thuộc đoạn [a ; b] thì u(x) có đạo

hàm u’(x) liên tục, u(x) ∈ [α ; β] và g(u) liên tục trên đoạn [α ; β], ta được :
f(x)dx= g[u(x)]u’(x)dx= g(u)du.

2. Phương pháp tính tích phân từng phần

Cho u(x), v(x) là hai hàm số có đạo hàm liên tục trên đoạn [a ; b] là u’(x), v’(x). Ta có: 
                   udv = uv - vdu.
Ví dụ:

Tính  ta được kết quả là:
(A)0            (B)             (C) 1                  (D)      

                                            Giải
Ta có một nguyên hàm của f(x) = cos2x là nên

 Chọn (B).


Thống kê thành viên
Tổng thành viên 315.258
Thành viên mới nhất 146853829788870
Thành viên VIP mới nhất minh-anhVIP

Mini games


Đăng ký THÀNH VIÊN VIP để hưởng các ưu đãi tuyệt vời ngay hôm nay




Mọi người nói về baitap123.com


Đăng ký THÀNH VIÊN VIP để hưởng các ưu đãi tuyệt vời ngay hôm nay
(Xem QUYỀN LỢI VIP tại đây)

  • BẠN NGUYỄN THU ÁNH
  • Học sinh trường THPT Trần Hưng Đạo - Nam Định
  • Em đã từng học ở nhiều trang web học trực tuyến nhưng em thấy học tại baitap123.com là hiệu quả nhất. Luyện đề thả ga, câu hỏi được phân chia theo từng mức độ nên học rất hiệu quả.
  • BẠN TRẦN BẢO TRÂM
  • Học sinh trường THPT Lê Hồng Phong - Nam Định
  • Baitap123 có nội dung lý thuyết, hình ảnh và hệ thống bài tập phong phú, bám sát nội dung chương trình THPT. Điều đó sẽ giúp được các thầy cô giáo và học sinh có được phương tiện dạy và học thưc sự hữu ích.
  • BẠN NGUYỄN THU HIỀN
  • Học sinh trường THPT Lê Quý Đôn - Hà Nội
  • Em là học sinh lớp 12 với học lực trung bình nhưng nhờ chăm chỉ học trên baitap123.com mà kiến thức của em được củng cố hơn hẳn. Em rất tự tin với kì thi THPT sắp tới.