Ghi nhớ bài học |

Đường tiệm cận của đồ thị hàm số

Để tìm đường tiệm cận của hàm số y = f(x) ta dựa vào tập xác định D để biết số giới hạn phải tìm. Nếu tập xác định D có đầu mút là khoảng thì phải tìm giới hạn của hàm số khi x tiến đến đầu mút đó.

Ví dụ: D = [a ; b) thì phải tính   thì ta phải tìm ba giới hạn là

- Để tìm đường tiệm cận ngang ta phải có giới hạn của hàm số ở vô tận:

 thì (Δ) : y = y0 là tiệm cận ngang của (C) : y = f(x).

- Để tìm đường tiệm cận đứng thì hàm số phải ra vô tận khi x tiến đến một giá trị x0 :
Nếu  thì (Δ) : x = x0 là đường tiệm cận đứng của (C) : y = f(x).

- Để tìm đường tiệm cận xiên của (C) : y = f(x), trước hết ta phải có điều kiện

. Sau đó để tìm phương trình đường tiệm cận xiên ta có hai cách :
 +  Phân tích biểu thức y = f(x) thành dạng y = f(x) = ax + b + ε(x)  thì (Δ) : y = ax + b

(a ≠ 0) là đường tiệm cận xiên của (C) : y = f(x) 

+ Hoặc ta tìm a và b bởi công thức:



Khi đó y = ax + b là phương trình đường tiệm cận xiên của (C) : y = f(x).

Ghi chú :

Đường tiệm cận của một số hàm số thông dụng :

- Hàm số  có hai đường tiệm cận đứng và ngang lần lượt có phương trình

là 

- Với hàm số   (không chia hết và a.p ≠ 0), ta chia đa thức để có:

thì hàm số có hai đường tiệm cận đứng và xiên lần lượt có phương trình là: 


- Hàm hữu tỉ   (không chia hết) có đường tiệm cận xiên khi bậc của tử lớn hơn bậc của mẫu một bậc.

- Với hàm hữu tỉ, giá trị x0 làm mẫu triệt tiêu nhưng không làm tử triệt tiêu thì x = x0 chính là phương trình đường tiệm cận đứng.

- Hàm số  có thể viết ở dạng 

hàm số sẽ có hai đường tiệm cận xiên: 
Ví dụ: Đồ thị hàm số    có các đường tiệm cận với phương trình là kết quả nào

sau đây?

(A) x = 3, y = 1 ;               (B) x= 3, x = -3, y = 1 ;
(C)x = -3, y = 1 ;               (D) x = 3, y = 2x - 4.

                                                          Giải
 

là phương trình đường tiệm cận ngang.

  (nên x = 3 không là tiệm cận đứng).

 là phương trình đường tiệm cận đứng 

Chon đáp án C.

Thống kê thành viên
Tổng thành viên 326.059
Thành viên mới nhất PhuongDung0812
Thành viên VIP mới nhất baobao269VIP

Mini games


Đăng ký THÀNH VIÊN VIP để hưởng các ưu đãi tuyệt vời ngay hôm nay




Mọi người nói về baitap123.com


Đăng ký THÀNH VIÊN VIP để hưởng các ưu đãi tuyệt vời ngay hôm nay
(Xem QUYỀN LỢI VIP tại đây)

  • BẠN NGUYỄN THU ÁNH
  • Học sinh trường THPT Trần Hưng Đạo - Nam Định
  • Em đã từng học ở nhiều trang web học trực tuyến nhưng em thấy học tại baitap123.com là hiệu quả nhất. Luyện đề thả ga, câu hỏi được phân chia theo từng mức độ nên học rất hiệu quả.
  • BẠN TRẦN BẢO TRÂM
  • Học sinh trường THPT Lê Hồng Phong - Nam Định
  • Baitap123 có nội dung lý thuyết, hình ảnh và hệ thống bài tập phong phú, bám sát nội dung chương trình THPT. Điều đó sẽ giúp được các thầy cô giáo và học sinh có được phương tiện dạy và học thưc sự hữu ích.
  • BẠN NGUYỄN THU HIỀN
  • Học sinh trường THPT Lê Quý Đôn - Hà Nội
  • Em là học sinh lớp 12 với học lực trung bình nhưng nhờ chăm chỉ học trên baitap123.com mà kiến thức của em được củng cố hơn hẳn. Em rất tự tin với kì thi THPT sắp tới.