Một số dạng phương trình lượng giác thường gặp

1. Phương trình bậc hai đối với một hàm số lượng giác
Phương trình có dạng:
       af2(x) + bf(x) + c = 0, a, b, c ∈ R, a ≠ 0
f(x) là hàm số có một trong các dạng sinu(x), cosu(x), tanu(x), cotu(x)
Cách giải
Đặt ẩn phụ f(x) = t. Giải phương trình theo ẩn t: at2 + bt + c = 0
Rồi giải phương trình lượng giác cơ bản đối với mỗi nghiệm của phương trình theo t.

2. Phương trình bậc nhất đối với sinx và cosx
      asinx + bcosx = c (a2 + b2 > 0)
Điều kiện có nghiệm a2 + b2 > c2

3. Phương trình đối xứng đối với sinx và cosx
     a(sinx + cosx) + bsinxcosx = c
Cách giải

Ta được phương trình theo t.

4. Phương trình đẳng cấp đối với sinx và cosx
       asin2x + bsinxcosx + ccos2x = d
Cách giải
• Xét cosx = 0
• Xét cosx ≠ 0. Chia hai vế phương trình cho cos2x, ta đưa về phương trình theo tanx.
(Cũng có thể xét sinx = 0; còn khi sinx ≠ 0, chia hai vế phương trình cho sin2x, ta đưa về phương trình theo cotx).

Thống kê thành viên

Tổng thành viên 88.293
Thành viên mới nhất nhung-anh